77 research outputs found

    Silicane and germanane: tight-binding and first-principles studies

    Full text link
    We present a first-principles and tight-binding model study of silicane and germanane, the hydrogenated derivatives of two-dimensional silicene and germanene. We find that the materials are stable in freestanding form, analyse the orbital composition, and derive a tight-binding model using first-principles calculations to fit the parameters.Comment: Published in "2D Materials

    Auger recombination of dark excitons in WS2{\rm WS_2} and WSe2{\rm WSe_2} monolayers

    Full text link
    We propose a novel phonon assisted Auger process unique to the electronic band structure of monolayer transition metal dichalcogenides (TMDCs), which dominates the radiative recombination of ground state excitons in Tungsten based TMDCs. Using experimental and DFT computed values for the exciton energies, spin-orbit splittings, optical matrix element, and the Auger matrix elements, we find that the Auger process begins to dominate at carrier densities as low as 109−10 cm−210^{9-10}~{\rm cm^{-2}}, thus providing a plausible explanation for the low quantum efficiencies reported for these materials.Comment: 5 pages, 2 figure

    Hybrid kâ‹…p\mathbf{k\cdot p}-tight-binding model for intersubband optics in atomically thin InSe films

    Full text link
    We propose atomic films of n-doped γ\gamma-InSe as a platform for intersubband optics in the infrared (IR) and far infrared (FIR) range, coupled to out-of-plane polarized light. Depending on the film thickness (number of layers) of the InSe film these transitions span from ∼0.7\sim 0.7 eV for bilayer to ∼0.05\sim 0.05 eV for 15-layer InSe. We use a hybrid k⋅p\mathbf{k} \cdot \mathbf{p} theory and tight-binding model, fully parametrized using density functional theory, to predict their oscillator strengths and thermal linewidths at room temperature

    Stacking domains and dislocation networks in marginally twisted bilayers of transition metal dichalcogenides

    Full text link
    We apply a multiscale modeling approach to study lattice reconstruction in marginally twisted bilayers of transition metal dichalcogenides (TMD). For this, we develop DFT-parametrized interpolation formulae for interlayer adhesion energies of MoSe2_2, WSe2_2, MoS2_2, and WS2_2, combine those with elasticity theory, and analyze the bilayer lattice relaxation into mesoscale domain structures. Paying particular attention to the inversion asymmetry of TMD monolayers, we show that 3R and 2H stacking domains, separated by a network of dislocations develop for twist angles θ∘<θP∘∼2.5∘\theta^{\circ}<\theta^{\circ}_P\sim 2.5^{\circ} and θ∘<θAP∘∼1∘\theta^{\circ}<\theta^{\circ}_{AP}\sim 1^{\circ} for, respectively, bilayers with parallel (P) and antiparallel (AP) orientation of the monolayer unit cells and suggest how the domain structures would manifest itself in local probe scanning of marginally twisted P- and AP-bilayers

    Tunable Berry curvature, valley and spin Hall effect in Bilayer MoS2_2

    Full text link
    The chirality of electronic Bloch bands is responsible for many intriguing properties of layered two-dimensional materials. We show that in bilayers of transition metal dichalcogenides (TMDCs), unlike in few-layer graphene and monolayer TMDCs, both intra-layer and inter-layer couplings give important contributions to the Berry-curvature in the KK and −K-K valleys of the Brillouin zone. The inter-layer contribution leads to the stacking dependence of the Berry curvature and we point out the differences between the commonly available 3R type and 2H type bilayers. Due to the inter-layer contribution the Berry curvature becomes highly tunable in double gated devices. We study the dependence of the valley Hall and spin Hall effects on the stacking type and external electric field. Although the valley and spin Hall conductivities are not quantized, in MoS2_2 2H bilayers they may change sign as a function of the external electric field which is reminiscent of the behaviour of lattice Chern insulators.Comment: 19 pages, 6 figure

    Crossover from weakly indirect to direct excitons in atomically thin films of InSe

    Get PDF
    We perform a k⋅p\mathbf{k \cdot p} theory analysis of the spectra of the lowest energy and excited states of the excitons in few-layer atomically thin films of InSe taking into account in-plane electric polarizability of the film and the influence of the encapsulation environment. For the thinner films, the lowest-energy state of the exciton is weakly indirect in momentum space, with its dispersion showing minima at a layer-number-dependent wave number, due to an inverted edge of a relatively flat topmost valence band branch of the InSe film spectrum and we compute the activation energy from the momentum dark exciton ground state into the bright state. For the films with more than seven In2_2Se2_2 layers, the exciton dispersion minimum shifts to Γ\Gamma-point.Comment: 12 pages, 7 figure

    Electron spin resonance signal of Luttinger liquids and single-wall carbon nanotubes

    Full text link
    A comprehensive theory of electron spin resonance (ESR) for a Luttinger liquid (LL) state of correlated metals is presented. The ESR measurables such as the signal intensity and the line-width are calculated in the framework of Luttinger liquid theory with broken spin rotational symmetry as a function of magnetic field and temperature. We obtain a significant temperature dependent homogeneous line-broadening which is related to the spin symmetry breaking and the electron-electron interaction. The result crosses over smoothly to the ESR of itinerant electrons in the non-interacting limit. These findings explain the absence of the long-sought ESR signal of itinerant electrons in single-wall carbon nanotubes when considering realistic experimental conditions.Comment: 5 pages, 1 figur

    Multifaceted moir\'e superlattice physics in twisted WSe2_2 bilayers

    Get PDF
    Lattice reconstruction in twisted transition-metal dichalcogenide (TMD) bilayers gives rise to piezo- and ferroelectric moir\'e potentials for electrons and holes, as well as a modulation of the hybridisation across the bilayer. Here, we develop hybrid kâ‹…p\mathbf{k}\cdot \mathbf{p} tight-binding models to describe electrons and holes in the relevant valleys of twisted TMD homobilayers with parallel (P) and anti-parallel (AP) orientations of the monolayer unit cells. We apply these models to describe moir\'e superlattice effects in twisted WSe2{}_2 bilayers, in conjunction with microscopic \emph{ab initio} calculations, and considering the influence of encapsulation, pressure and an electric displacement field. Our analysis takes into account mesoscale lattice relaxation, interlayer hybridisation, piezopotentials, and a weak ferroelectric charge transfer between the layers, and describes a multitude of possibilities offered by this system, depending on the choices of P or AP orientation, twist angle magnitude, and electron/hole valley.Comment: 44 pages, 27 figures, 6 appendices. For v2: Modelling and analysis for Q-point bands and minibands adde
    • …
    corecore